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Abstract 

The Matusita overlapping coefficient (MOC) 𝜌𝜌 is defined as the similarity or agreement 
between two distributions. Let       and       be two probability density functions for 
the two independent continuous random variables   and   respectively, then the MOC is 
defined by 𝜌𝜌   ∫√            . Some studies estimated 𝜌𝜌  under pair Weibull 
distributions with different scale parameters and the same shape parameter. Without using 
this assumption, it is difficult to find the mathematical formula of 𝜌𝜌. This paper deals with 
the estimation of 𝜌𝜌 under pair Weibull distributions without any restrictions on the 
parameters of the Weibull distributions. A new technique is suggested to estimate 𝜌𝜌, 
which can be used with and without using any assumptions about these parameters. In all 
situations, the maximum likelihood method is used to estimate the Weibull distributions 
parameters. The properties of the resulting proposed new estimators of 𝜌𝜌  are 
investigated and compared with some existing parametric and nonparametric kernel 
estimators via Monte-Carlo simulation technique. The results show that the new 
technique is very competitor and the performances of the resulting new estimators are 
better than that of the nonparametric kernel estimators for all considered cases. 
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1.  Introduction 

To determine the similarity between two populations in statistics, we can use the  
Matusita overlapping coefficient (MOC) 𝜌𝜌. MOC is defined as a measure of agreement 
between two probability distributions. Let       and       be two probability density 
functions for the two independent continuous random variables   and   respectively, the 
MOC is defined by (Matusita, 1955),  

𝜌𝜌   ∫√             

If the value of 𝜌𝜌 is 1 (i.e. 𝜌𝜌   ) then                 If  𝜌𝜌    then the supports of the 
two densities       and       have no interior points in common. 

In general, there are three main well-known measures of overlapping, namely: 
Matusita  measure 𝜌𝜌,  Morisita  measure    and Weitzman  measure  . However, we have 
paid attention to the Matusita measure 𝜌𝜌 in this article. Overlapping measures are 
applied in different areas like, genetic (Federer, 1963), ecology (Pianka, 1973), income 
(Gastwirth, 1975), reliability analysis to estimate the proportion of machines or electronic 
devices that have similar range of failure time (Ichikawa, 1993 and Dhaker et al., 2019). 
Dhaker et al. (2019) reported: "The machines may come from two different sources or 
may be under different stress, which implies different probability densities of failure time. 
This proportion can be measured by the MOC coefficient of the two densities".  

In the literature, the main two methods to estimate the overlapping measures are the 
parametric and the nonparametric methods. On one hand, the nonparametric method 
can be used when the shape of the densities       and       for specific data sets is 
difficult to determine. In this case,       and       are estimated by using the non-
parametric methods such as Jackknife and Bootstrap (Mulekar and Mishra, 1994), kernel 
method (Eidous and Al-Talafha. 2022 and Alodat et al., 2022) and empirical distribution 
method (Pastore, 2018). Despite of recent advances in nonparametric methods, 
parametric methods are still widely used among many researchers (other than 
statisticians) in different areas, mainly because of their simplicity. In addition, the 
parametric method is better than the corresponding nonparametric counterparts when 
all required assumptions are met. Parametric methods assume that the shapes of 
probability density functions        and       are known, and they depend on an 
unknown parameter  , which may be a vector. The parameter(s)   can be estimated by 
the usual point estimation methods such as the maximum likelihood (ML) method or the 
method of moments (MM). 

Inman and Bradly (1989) estimated overlapping measures under the normality 
assumption of both distributions with equal variances. In addition, they investigated 
some cases where the overlapping measures can be applied. Mulekar and Mishra (1994) 
derived and studied the overlapping measures of two normal distributions with equal 
means and different variances. Independently, Eidous and Al-Daradkeh (2022) and Eidous 



Estimation of Matusita Overlapping Coefficient r for Two Weibull Distributions 	 3

3 
 

and Shourman (2022) each presented novel techniques to estimate the Matusita 
overlapping coefficient 𝜌𝜌 under pair normal distributions without using any restrictions 
on the equality of their location parameters and the equality of their scale parameters. 
Al-Saidy et al. (2005) derived the formulas of overlapping coefficients in the case of 
Weibull distributions and estimate them under the conditions that the two shape 
parameters are equal. The     of Weibull model with a scale parameter   and a shape 
parameter   is, 

      
 
 (

 
 )

   
                    

We will denote this by             . Figure (1) displays the plots of Weibull 
distribution with shape parameter     and four values for the scale parameter 
         , while Figure (2) plots four Weibull distribution curves with     and  
         6. The Weibull distribution is associated with a number of density functions. 
In particular, it interpolates between the exponential distribution (    ) and 
the Rayliegh distribution (    and        ). Let                     and 
                    where   and   are independent random variables. Assume 
that          say),         and           , the formulas of the measures 𝜌𝜌  
based on the Weibull models that derived by Al-Saidy et al., (2005) is, 

𝜌𝜌  ∫ √                        
 

 
     

       

Let  ̂ and  ̂ be the maximum likelihood (ML) estimator of   and   respectively, then 

𝜌̂𝜌   
 √ ̂ ̂

   ̂ ̂ 

is the ML estimator of 𝜌𝜌.  The value of 𝜌𝜌 for two exponential distributions can be obtained 
by taking     in the Weibull distribution. The case of two exponential distributions was 
studied by [15, 16]. Samawi and al-Saleh (2008) studied the effect of sampling scheme on 
overlapping coefficients. To estimate 𝜌𝜌 , Al-Saidy et al. (2005) used the maximum 
likelihood method to estimate the corresponding parameters   ,    and  . 

If         then the closed form of the interested parameter 𝜌𝜌 can be obtained, 
which is as given by the above formula. We can estimate it by estimating the 
corresponding parameters   ,    and   by using – for example – maximum likelihood 
method. Now if       but       then the closed form of 𝜌𝜌 cannot be obtained. The 
same thing can be said if       and      . Therefore, for the last two cases, we 
cannot estimate 𝜌𝜌 by the same technique as of the first case. The main aim of this article 
is to suggest a new technique that enables us to estimate   for all of the above different 
cases including the first one. 
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Figure 1.  The plot of          ,          . 

 

 

 

 

 

 

 

 Figure 2.  The plot of          ,          6. 
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2. Estimation of Weibull Distributions Parameters 

To estimate the Matusita Measure 𝜌𝜌 we need to estimate the parameters of the two Weibull 
distributions. We suggest using the well-known maximum likelihood method, which produces 
consistent estimators for the various parameters.   

Let            be a random sample of size   from             and let            be 
another random sample of size    from            , where the two samples are 
independent. The likelihood function of             and             is, 

               
    
      

    
      

(∏  
  

   
)
    

(∏  
  

   
)
    

  
 

    
∑   

    
     

    
∑   

    
    

In the following subsections, the maximum likelihood estimators (MLEs) of the different Weibull 
distribution parameters are obtained by considering the three cases:  

a) The two scale parameters are equal  

b) The two shape parameters are equal and  

c) There is no restrictions about the scale and shape parameters. 

2.1 Two Scale Parameters are Equal 

Suppose that the two scale parameters are equal, i.e.              , then the 
likelihood function becomes, 

           
        
          (∏  

  

   
)
    

(∏  
  

   
)
    

  
 

   
∑   

    
     

   
∑   

    
    

The ML estimators of      and    can be obtained by solving the following three equations 
numerically (such as Newton-Raphson method) with respect to      and   ,  
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2.2 Two Shape Parameters are Equal 

Suppose that the two shape parameters are equal, i.e.         (  say), then the 
likelihood function becomes, 

           
      

          
(∏  

  

   
∏  
  

   
)
   

  
 

   
∑   

   
     

   
∑   

   
     

The ML estimators of       and   are obtained by solving the following three equations 
numerically using Newton-Raphson method,  
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2.3 Scale and Shape Parameters are not Necessarily Equal 

Without using any restrictions about the Weibull distributions parameters, the likelihood 
function                is as given above. Therefore, the ML estimators of          
and    are obtained by solving the following equations simultaneously with respect to 
         and   . 
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Again Newton-Raphson method can be used to solve the above equations. 
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3. Estimation of Matusita Measure 𝝆𝝆 

The formula of Matusita Measure 𝜌𝜌 under two independent Weibull distributions is defined as,  

𝜌𝜌  ∫ √             
 

 
 ∫ √                        

 

 
 

To be able to estimate 𝜌𝜌  we will write it as an expected value of some functions. By 
considering                         as a function of   and             
            as a function of  , then, 

                                 (           
           

)
 
 
  ∫ (           

           
)
 
  

 
               

                                                                       ∫ √                        
 

 
 

                                                            𝜌𝜌  
and  

                                 (           
           

)
 
 
 ∫ (           

           
)
 
  

 
               

                                                                       ∫ √                        
 

 
 

                                                                       ∫ √                        
 

 
 

                                                            𝜌𝜌  

Also, 𝜌𝜌  can be expressed as the average of the above two quantities as follows,  

𝜌𝜌    * (
           
           

)
 
 
   (           

           
)
 
 
+  

Therefore, 𝜌𝜌  can be expressed as follows, 

  𝜌𝜌   (           
           

)
 
 
  (           

           
)
 
 
   * (

           
           

)
 
 
   (           

           
)
 
 
+  

Let            be a random sample of size    from             and let 
           be another random sample of size    from            , where the two 

samples are independent. We suggest to estimate  (           
           

)
 
  by the mean of 
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(            
            

)
 
              and to estimate  (           

           
)
 
  by the mean of 

(  (        )
  (        )

)
 
             . In the same way, we can estimate   * (

           
           

)
 
  

  (           
           

)
 
 + by the average of the above two means. However, the resulting 

estimators by adopting this technique are still depend on unknown quantities, which are 
the parameters   ,   ,    and   . Suppose that the maximum likelihood estimators of 
  ,   ,    and    are  ̂ ,  ̂ ,  ̂  and  ̂  respectively (see Section 2), then the suggested 
three estimators of  𝜌𝜌 are, 

𝜌̂𝜌  
 
  
∑(  (    ̂   ̂ )

  (    ̂   ̂ )
)
 
 

  

   
 

𝜌̂𝜌  
 
  
∑(

  (    ̂   ̂ )
  (    ̂   ̂ )
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𝜌̂𝜌  
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∑(  (    ̂   ̂ )

  (    ̂   ̂ )
)
 
 

  

   
  
  
∑(

  (    ̂   ̂ )
  (    ̂   ̂ )

)
 
 

  

   
+  

As a preliminary simulation study shown, the last estimator 𝜌̂𝜌  of 𝜌𝜌 is more stable than 
the other two estimators 𝜌̂𝜌  and 𝜌̂𝜌 . Therefore, only the performance of 𝜌̂𝜌  is 
investigated in our simulation study in Section (4).  

4.  Simulation Study  

To study the performance of the proposed estimator, a simulation study is performed. To 
simulate the data and to be consistent with the derivations of this paper, we considered 
the following three cases: 

Case (1). A pair of Weibull distribution have the same scale parameters (i.e.       
 ). 

Case (2). A pair of Weibull distribution have the same shape parameters (i.e.       
 )  

Case (3). A pair of Weibull distributions have different scale parameters and different 
shape parameters (i.e.       and      ). 

We simulate             from                   and            from       
            with specific values of the scale and shape parameters. To cover the most 
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possible cases in practice, 4 pair of distributions are chosen for each case. The selected  
parameters      ,   ,    and the exact value of 𝜌𝜌 for each selection are given in Table 
(1). The samples size are chosen to be                                          .  

In the first case (Case 1), we studied two proposed estimators for 𝜌𝜌. The first proposed 
estimator is the estimator that took into account the equality of the scale parameters 
(see Subsection 3.1), we will denote it by 𝜌̂𝜌   and the second estimator is 𝜌̂𝜌 , which was 
developed without any restrictions on the distribution parameters (see Subsection 3.3). 
Similarly, we considered two proposed estimators in the second case (Case 2). The first 
estimator will be denoted by 𝜌̂𝜌   (take into account the equality of the shape parameters, 
see Subsection 2.2) and the second estimator is 𝜌̂𝜌 . In the third case (Case `3), the only 
proposed estimator is 𝜌̂𝜌 . 

In the case of equal shape parameters of Weibull distributions (Case 2), the estimator 𝜌̂𝜌   
is also considered for sake of comparison (see Section 1). In addition, the nonparametric 
kernel estimator 𝜌̂𝜌  (see Eidous and Al-Talafha, 2022) is also included in this study. The 
kernel estimator 𝜌̂𝜌  can be used for the above three cases since it requires no 
assumptions about the distribution itself (Eidous and Al-Talafha, 2022). 

For each estimator, we compute the Relative Bias (RB) and Relative Root Mean Square 
Error (RRMSE) based on        replication.    and RRMSE are defined as follows, 

    ̂                  𝜌𝜌
      𝜌𝜌   

and 

      
√   ̂           

      𝜌𝜌  

For example, if 𝜌̂𝜌 is the estimator of 𝜌𝜌 and if 𝜌̂𝜌    is the value of 𝜌̂𝜌 computed based on a 
sample iteration  ,                then, 

 ̂ 𝜌̂𝜌  ∑ 𝜌̂𝜌   
    

   
      

and 

   ̂ 𝜌̂𝜌  ∑ (𝜌̂𝜌     ̂ 𝜌̂𝜌 )
 

    

   
       

5. Simulation Results 

Tables (2), (3) and (4) contain values of RB and RRMSE for the different estimators. The 
results of Table (2) depend on the data simulated from pair Weibull distributions with the 
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equal scale parameters. Table (3) contains the results when the data are simulated from 
pair Weibull distribution with equal shape parameters, while the results of Table (4) 
depends on the data simulated from pair Weibull distributions with different scale and 
different shape parameters. The two estimators 𝝆̂𝝆  (kernel estimator) and 𝝆̂𝝆  (proposed 
estimator without any restrictions on the Weibull distribution parameters) have been 
derived without any restrictions on the Weibull parameters. Therefore, the results of 
these two estimators are included in the three tables. The results related the proposed 
estimator 𝝆̂𝝆   are presented only in Table (2) since this estimators was derived under the 
assumption that the two scale parameters are equal. The two estimators 𝝆̂𝝆   and 𝝆̂𝝆   
(proposed estimator) were derived when the two shape parameters are assumed to be 
equal. Therefore, their results are included only in Table (3).  

From these simulation results, we can conclude the following: 

1. It is obvious that |  |s associated with the kernel estimator 𝜌̂𝜌  are significantly large 
compared with the other estimators, especially for small samples sizes. All values     
values of the kernel estimates are negative, which indicates that -on the average- 𝜌̂𝜌  is 
underestimate the true value 𝜌𝜌.  

2. As the sample sizes increases the       of the different estimators decreases. This is 
a good sign for the consistency of the different estimators that considered in this 
study. 

3. The values of       for the proposed estimators in different cases indicate that their 
performances are much better than the kernel estimator in all considered cases.  

4. As the results of Table (3) shown, the estimator 𝜌̂𝜌   performs better than the suggested 
estimators for small sample sizes and small exact value of 𝜌𝜌. This result can be seen by 
examining the corresponding values of       despite that the |  |s associated with 
the proposed estimators are less than that associated with 𝜌̂𝜌   in many cases . If the 
sample sizes gets large (say,   ,      ) the performances of 𝜌̂𝜌   and the proposed 
estimators are similar in most considered cases.  The major disadvantage of 𝜌̂𝜌   is that 
it can be used only when the data are assumed to follow pair Weibull distributions 
with equal shape parameters, which is often not feasible in practice. Of course, this 
limitation reduces the importance of this estimator as a general estimator for 𝜌𝜌. 

5. Based on the values of      s in Table (2) and by comparing the performances of the 
two proposed estimators 𝜌̂𝜌   and 𝜌̂𝜌  together; we can see that their performances 
seem to be similar (especially for large sample sizes) in most considered cases despite 
that 𝜌̂𝜌   is a bit better than 𝜌̂𝜌 . Similarly, we can see that 𝜌̂𝜌   is a bit better than 𝜌̂𝜌  
based on the results of Table (3).    

6. Despite the previous conclusion and by taking into account that 𝜌̂𝜌  is developed 
without any constraints on the Weibull distribution parameters, then we can 
recommend 𝜌̂𝜌  as a general estimator for 𝜌𝜌 in the case of Weibull distributions. 
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Table 1. Exact values of the overlapping coefficient 𝜌𝜌 for the 12 simulated pairs of Weibull 
distributions 

Weibull distributions             𝜌𝜌 

 
 
 

Case 1: Equal scales 

A 
 

B 
 

C 
 

D 

                   0.9816 

                    0.8971 

                     0.7581 

                      0.5679 

 
 
 

Case 2: Equal shapes 

A 
 

B 
 

C 
D 

                    0.9637 

                    0.8398 

                    0.7069 

                    0.2984 

 
 

Case 3:  Different 
scales and different 

shapes 

A 
 

B 
 

C 
 

D 

                      0.9793 

                      0.8435 

                       0.6893 

                  0.3929 
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Table  2. The RB and RRMSE of the three estimators  𝜌̂𝜌  𝜌̂𝜌  and  𝜌̂𝜌  when the data are simulated 
from pair Weibull distributions with equal scale parameters             

𝜌𝜌             

          (          𝜌̂𝜌  𝜌̂𝜌  𝜌̂𝜌   

( 3, 4 ) 

( 10, 10 ) RB -0.3490 -0.0635 -0.0223 
RRMSE 0.3692 0.0894 0.0595 

( 20, 30 ) RB -0.1786 -0.0262 -0.0085 
RRMSE 0.1956 0.0531 0.0470 

( 50, 50 ) RB -0.1204 -0.0139 0.0028 
RRMSE 0.1284 0.0231 0.0149 

( 100, 200 ) 
RB -0.0573 -0.0018 0.0091 

RRMSE 0.0593 0.0124 0.0147 
𝜌𝜌             

( 3, 6.2 ) 

( 10, 10 ) RB -0.4517 -0.0841 -0.0069 
RRMSE 0.4795 0.1588 0.1152 

( 20, 30 ) RB -0.2603 -0.0077 0.0177 
RRMSE 0.2739 0.0553 0.0628 

( 50, 50 ) RB -0.1798 -0.0174 0.0152 
RRMSE 0.2002 0.0570 0.0542 

( 100, 200) RB -0.0682 0.0035 0.0185 
RRMSE 0.0738 0.0287 0.0312 

𝜌𝜌             

( 3, 10.3 ) 

( 10, 10 ) RB -0.5063 -0.0508 0.0516 
RRMSE 0.5541 0.1758 0.1508 

( 20, 30 ) RB -0.3423 -0.0507 0.0157 
RRMSE 0.3634 0.1070 0.1244 

( 50, 50 ) RB -0.2718 -0.0313 0.0199 
RRMSE 0.2810 0.0787 0.0688 

( 100, 200) RB -0.1016 0.0067 0.0417 
RRMSE 0.1121 0.0434 0.0621 

𝜌𝜌             

( 3, 20.4 ) 

( 10, 10 ) RB -0.6922 -0.0509 -0.0238 
RRMSE 0.7190 0.2917 0.2629 

( 20, 30 ) RB -0.4200 -0.0654 -0.0138 
RRMSE 0.4661 0.2100 0.2258 

( 50, 50 ) RB -0.3587 -0.0549 0.0391 
RRMSE 0.3802 0.1210 0.1404 

( 100, 200) RB -0.1744 0.0120 0.0494 
RRMSE 0.1879 0.0715 0.0917 
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Table 3. The RB and RRMSE of the three estimators  𝜌̂𝜌  𝜌̂𝜌  and  𝜌̂𝜌   when the data are simulated 
from pair Weibull distributions with equal shape parameters          . 

              𝜌𝜌             
          (          𝜌̂𝜌  𝜌̂𝜌    𝜌̂𝜌  𝜌̂𝜌   

( 1, 1.2 ) 

( 10, 10 ) RB -0.3857 -0.0874 -0.1306 -0.1041 
RRMSE 0.4352 0.1414 0.1932 0.1692 

( 20, 30 ) RB -0.1682 -0.0124 -0.0297 -0.0139 
RRMSE 0.1868 0.0393 0.0562 0.0404 

( 50, 50 ) RB -0.1075 -0.0179 -0.0234 -0.0199 
RRMSE 0.1171 0.0392 0.0438 0.0400 

( 100, 200 ) 
RB -0.0521 -0.0017 -0.0039 -0.0015 

RRMSE 0.0545 0.0135 0.0130 0.0135 
𝜌𝜌             

( 1, 1.5 ) 

( 10, 10 ) RB -0.3222 -0.0482 -0.0798 -0.0549 
RRMSE 0.3857 0.1739 0.1948 0.1878 

( 20, 30 ) RB -0.2104 -0.0563 -0.0642 -0.0605 
RRMSE 0.2260 0.0905 0.0983 0.0948 

( 50, 50 ) RB -0.1113 -0.0173 -0.0225 -0.0106 
RRMSE 0.2023 0.1106 0.1182 0.1249 

( 100, 200 ) 
RB 0.0744 -0.0104 -0.0168 -0.0163 

RRMSE 0.0879 0.0419 0.0473 0.0478 
𝜌𝜌             

( 1, 1.8 ) 

( 10, 10 ) RB -0.3070 -0.0146 -0.0671 -0.0344 
RRMSE 0.3490 0.1525 0.1989 0.1952 

( 20, 30 ) RB -0.1657 0.0115 -0.0091 0.0105 
RRMSE 0.2241 0.1182 0.1177 0.1190 

( 50, 50 ) RB -0.1306 -0.0059 -0.0209 -0.0166 
RRMSE 0.1754 0.1000 0.0990 0.1003 

( 100, 200 ) 
RB -0.0638 -0.0038 -0.0017 -0.0003 

RRMSE 0.0800 0.0456 0.0424 0.0424 
𝜌𝜌             

( 1, 3.5 ) 

( 10, 10 ) RB -0.2619 -0.0988 -0.1227 -0.0538 
RRMSE 0.4741 0.2931 0.4394 0.4566 

( 20, 30 ) RB -0.1373 -0.0267 -0.0178 0.0082 
RRMSE 0.3179 0.2201 0.3010 0.3128 

( 50, 50 ) RB -0.1275 -0.0409 -0.0267 -0.0018 
RRMSE 0.2786 0.1854 0.2659 0.2781 

( 100, 200 ) 
RB -0.0694 0.0023 0.0131 0.0165 

RRMSE 0.1361 0.0955 0.1131 0.1126 
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Table 4. The RB and RRMSE of the three estimators 𝜌̂𝜌  and 𝜌̂𝜌  when the data are simulated from 
pair Weibull distributions with different scale and different shape.  

𝜌𝜌             

                    (          𝜌̂𝜌  𝜌̂𝜌  

( 1, 1.2 ) ( 2, 1.8 ) 

( 10, 10 ) RB -0.2213 -0.0704 
RRMSE 0.2529 0.1043 

( 20, 30 ) RB -0.1433 -0.0387 
RRMSE 0.1700 0.0751 

( 50, 50 ) RB -0.0535 -0.0030 
RRMSE 0.0651 0.0203 

( 100, 200 ) 
RB -0.0325 -0.0048 

RRMSE 0.0362 0.0162 
𝜌𝜌             

( 1, 1.5 ) ( 3, 1.9 ) 

( 10, 10 ) RB -0.2120 -0.0117 
RRMSE 0.2700 0.1280 

( 20, 30 ) RB -0.1419 -0.0197 
RRMSE 0.1796 0.0906 

( 50, 50 ) RB -0.0993 -0.0253 
RRMSE 0.1158 0.0556 

( 100, 200 ) 
RB -0.0614 -0.0158 

RRMSE 0.0688 0.0356 
𝜌𝜌             

( 1, 1.8 ) ( 4, 2.1 ) 

( 10, 10 ) RB -0.3760 -0.1322 
RRMSE 0.4292 0.2403 

( 20, 30 ) RB -0.1624 -0.0148 
RRMSE 0.2064 0.1413 

( 50, 50 ) RB -0.1166 -0.0227 
RRMSE 0.1542 0.1126 

( 100, 200 ) 
RB -0.0783 -0.0033 

RRMSE 0.0987 0.0561 
𝜌𝜌             

( 1, 3 ) ( 6, 2 ) 

( 10, 10 ) RB -0.4320 -0.1404 
RRMSE 0.5979 0.4086 

( 20, 30 ) RB -0.1983 0.0259 
RRMSE 0.3472 0.2311 

( 50, 50 ) RB -0.1616 0.0006 
RRMSE 0.2437 0.1836 

( 100, 200 ) 
RB -0.1087 -0.0160 

RRMSE 0.1350 0.0758 
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